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Two-dimensional, incompressible flows are discussed by a generalization of the line- 
vortex model. A large number of structures are randomly distributed initially. Each 
individual structure is convected by the superposed flow field of all the others. The 
statistical properties of the resulting spacetime varying random flow are studied. 
Analytical expressions for both Eulerian and Lagrangian correlation functions are 
obtained for the limit where the density of structures is large. The analytical results 
compare favourably with numerical simulations. The study serves as a special test on 
proposed relations between Eulerian and Lagrangian averages which can be 
generally valid, i.e. also for three-dimensional, turbulent flows. 

1. Introduction 
The dynamics of two-dimensional flows present a number of interesting problems 

which can be tested numerically even with modest computer resources. I n  the 
present study we take advantage of the ease with which two-dimensional flows can 
be simulated numerically, using a generalized version of Onsager’s (1949) interacting 
line-vortex model. I n  particular some specific theoretical results of Wandel & 
Kofoed-Hansen (1962) and PBcseli & Mikkelsen (1985) for the relations between 
Eulerian and Lagrangian averages can then be tested with good accuracy under well- 
defined conditions in two-dimensions, although the results in their most general form 
are applicable to  fully three-dimensional conditions as well. 

Originally Wandel & Kofoed-Hansen (1962) set out to provide a theoretical basis 
for the hypothesis of Hay & Pasquill (1960) which gives a phenomenological relation 
between the power spectra PL(w) and PE(w) obtained by Lagrangian and Eulerian 
sampling, respectively, of the turbulent velocity fluctuations. They suggested a 
simple scaling as 

where the constant /3 was determined empirically to be in the range 2 < P < 4. In  
terms of the correlation functions the relation (1) becomes 

PL@) = PPdPwL (1) 

RL(P4 x RE(7). (2) 
Rather than approaching the problem by the Navier-Stokes equation, Wandel & 
Kofoed-Hansen (1962) considered an autonomous system which for certain 
parameters have turbulence-like features. They thus assumed a flow field u(r, t )  
obtained by superposition of many structures, i.e. 

N 

o(r,  t )  = c uz(r-rz) .  
1 

(3) 
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An autonomous model is obtained by requiring that individual structures, or 
eddies, are convected by the flow generated by all the others, i.e. 

By studying systems described in (3)-(4) with some simplifying assumptions 
Wandel & Kofoed-Hansen (1962) suggestcd a value for /3 in (1)-(2) which depended 
explicitly on the r.m.s. value of the velocity fluctuations, and the mean flow velocity, 
(v), as /3 = ($)((v)/u’), where u” = $(uz) in three dimensions in the limit where 
(v) 9 u’. This result has bcen recognized in the literature, see e.g. Panofsky & 
Dutton (1984). The analysis is, however, much more general and contains a 
fundamental result in terms of explicit relations between Eulerian and Lagrangian 
velocity correlations. It is our aim to  study and analyse these relations. For this 
purpose a numerical code was developed in which a system containing a large 
number of structures and evolving in accordance with (3)-(4) is simulated. Although 
the formulation of these equations allows, in principle, a full three-dimensional 
modelling, our calculations are, as mentioned, restricted to two dimensions. This 
analysis is relevant also for other physical systems, such as certain types of low- 
frequency plasma turbulence, which may be quite well described by a two- 
dimensional model (Joyce & Montgomery 1973; Seyler et al. 1975; Huld et al. 1988; 
Knorr & PBcseli 1989). 

In two dimensions (3) and (4) are rewritten conveniently as 

and 

N 

v(r ,  t )  = V@ x f? = 2 V$bl(r-rl(t)) x f?, 
1 

N 
-- 

dt k + l  

where introduction of the stream function @ ensures that the flow is incompressible, 
V - u(r ,  t)  = 0. The unit vector i is perpendicular t o  the plane confining the system. 
The vorticityassociated with theflowisw = -V2@ = -CF V @ , ( r - r , ) .  Thenumber of 
structures in the system, N ,  is varying randomly over the ensemble of realizations 
according to a Poisson distribution. Elements of this model can be found also in the 
paper by Chorin (1973). In particular, Onsagcr’s (1949) line-vortex model is a special 
case of (5)-(6) with the choice $bk(r) = A,ln (Irl). It is readily demonstrated that the 
dynamical system of structures described by (5)-(6) can be put in a Hamiltonian 
form for $bk = A ,  F (  Irl) where F ( r )  is an arbitrary function and A, is a constant. With 

l z k  

the generalized coordinates are related to the (x, y)-coordinates in configuration 
space by 

i.e. dp,/dt = -aH/aq, and dq,/dt = aH/ap,. The notation 1 > k in the summation in 
(7)  indicates that  each pair of structures is counted only once. Since H is not an 
explicit function of time, it is a constant of motion for an isolated system. The 
Hamiltonian (7) accounts for an effective potential energy of the interacting 
structures, as evident by considering the particular line-vortex model. The system 
does not possess any kinetic energy in the usual sense (Joyce & Montgomery 1973). 

(QL>Pl) = lAll~(%Y,sign (All), (8) 
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The Hamiltonian (7) applies in thc absence of boundaries. The presenoc of periodic 
boundary conditions requires thc introduction of a modified potential for F (Ewald 
1921). 

It is clear from the construction that the individual structures, specified by q$ in 
( 5 )  and (6) or by F in (7), are not distortcd by the flow. The lengthscales of the 
structures are thus imposed a priori and will characterize the flow a t  all times. 
However, any macroscopic arrangement of many individual structures will be 
distorted and sheared by the flow. The velocity field (5) will therefore have properties 
in common with flows described by two-dimensional Euler equations although the 
two equations governing the time evolutions of the flows are different. Evidently any 
flow described by (5) with smooth initial condition will remain smooth for any later 
time, i.e. no discontinuities will develop. Also these properties are consistent with 
those characterizing flows described by the Euler equation in two dimensions (Sulem 
& Sulem 1983; Sulem, Sulem & Frisch 1983). 

From (8) it is readily concluded that phase space is finite for a confined system. 
Onsager (1949) pointed out that for such systems the temperature may take on 
negative values. In  such cases the system is expected to  be characterized by an 
ordering of structures, (or eddies), appearing as a clustering of structures having the 
same sign of the amplitude, A,, as discussed also by Joyce & Montgomery (1973) and 
Montgomery & Joyce (1974). This clustering can be argued in a particularly simple 
way for the line-vortex model : for a finite physical domain the only way to  increase 
the energy content of the system indefinitely is to place like-signed vortices close to 
each other, resulting in macroscopically organized structures. (Recall that T = 
dQ/dS, where T is the temperature, Q is the energy while the entropy S can be taken 
as a measurc of the disorder of the system. The inverse temperature is a measure of 
the change of disorder of a system per unit change in energy. The actual value of the 
system energy where the temperature changes sign is subject to some controversy.) 
On thc other hand, the positive temperature states, which will be studied in the 
present work, arc expected to be characterized by complete randomness, i.e. a 
structure can at any time be found with equal probability in any area element of 
phase space, irrespective of the position of the other structures. Explicit use of this 
feature will be made in the subsequent analysis. The negative temperature states 
were avoided by choosing initial states with low values of the Hamiltonian (Joyce & 
Montgomery 1973). 

Our analysis was restricted to two spatial dimensions in order to reduce the 
demands on computer resources. Even this restricted study is, however, of physical 
relevance in connection with certain types of low-frequency electrostatic turbulence 
in strongly magnetized plasmas (Huld et al. 1988). I n  these cases magnetic field lines 
can be considered equi-potential, and a two-dimensional description (Joyce & 
Montgomery 1973) in the plane perpendicular to  the magnetic field, B, is appropriate. 
Line charges are here the analogues of the vortices. They give rise to a spatially 
varying electrostatic field, E, and the slow movement of the guiding centres is given 
by the E x  BIB2-velocity. It is interesting to note that in this problem the 
electrostatic potential, which is a readily measurable quantity, takes the role of the 
stream function. Turbulent diffusion of charged particles across magnetic field lines 
is a particularly pcrtincnt problem for present day fusion research. 

The paper is organized as follows: in $ 2  the results and arguments of Wandel & 
Kofoed-Hansen (1962) are summarized, with particular attention to the two- 
dimensional formulation of their analysis as discussed by PBcscli & Mikkelsen (1985). 
An alternative simple derivation of these results is presented, which gives an insight 
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into the assumptions underlying the analysis. Our numerical results are presented in 
$3 and compared with the expressions obtained in §2. Finally, $4 contains our 
conclusions, where the implications of the results for analysis of turbulent diffusion 
are discussed. 

2. Analytical results 
In  the first part of this section we summarize the main results of Wandel & Kofoed- 

Hansen (1962) and given in more detail by Kofoed-Hansen & Wandel (1967). Their 
study is concerned with model systems described by (3)-(4), which are analysed in 
certain limits described by parameters characterizing the system. One of the 
parameters is the normalized density of structures p,  while an other one E is a 
characteristic of the wavenumber spectrum of the turbulence, expressed in terms of 
wavenumbers raised to some power, and averaged over the entire spectrum. The 
most important of these two parameters is p,  which for a given area of the system 
is a measure of the average number of structures, i.e. the number of degrees of 
freedom in the system. In this sense p can be interpreted as being proportional to an 
effective Reynolds number. 

2.1. Summary of basic analytical results 
In the present work we study in particular the correlation functions for the velocity 
fluctuations. The velocity field is sampled either along a trajectory r = r ( t ) ,  where 
r = uo t with u, = constant, which corresponds to Eulerian sampling (in particular we 
may have wo = 0), or along r(t)  = j t  u(r(7), 7 )  d7 with u given by ( 5 ) ,  which corresponds 
to the Lagrangian sampling with velocity u(t)  = u(r(t), t ) .  The normalized Lagrangian 
correlation functions can be written as a series expansion (Hinze 1975) 

RL(7) (u( t )  - u(t+7)) 

where angle brackets denote ensemble averages. Time stationarity is assumed, i.e. R, 
is a function of time separations only and does not depend explicitly on both t and 
7.  The symmetry property RL(7) = RL( - 7 )  was explicitly used. It is assumed that 
each of the terms in (9) is finite and that RL(7 + 00) + 0. Situations may formally exist 
where the series (9) diverges or the series expansion is not feasible. These cases are 
not considered here. As the first step the eigenmotion of the eddies is ignored, i.e. 
rl = constant in (3)-(4). This limit corresponds to analysing the transport properties 
of a frozen flow where the velocity varies with position but not with time. A basic 
result of Wandel & Kofoed-Hansen (1962) admits, in the limit p + co and E + 0, the 
approximation 

((d:u)l) = ( [ ( u .  V ) n u ] 2 )  x ( ( lul"(e-  V ) n u ) 2 )  

for homogeneous, isotropic turbulence, where e is an arbitrary unit vector in the 
plane confining u. Introducing the power-spectrum b(k )  for the velocity fluctuations 
we use the definition for (k2") = j: kZnb(k)dk. Equation (10) can then be 

x (uZn) . ( [ ( e  - V ) n ~ ] 2 ) ,  (10) 

rewritten as 

In  the limit of large ,u and randomly distributed structures, the components of u are 
normally distributed by the central limit theorem, and ( u Z n )  is readily calculated for 
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all n. In  particular S,"B(k)dk = 1 .  It was subsequently demonstrated that the 
random motion of the individual structures could be accounted for simply by 
replacing u in (u2") by the average velocity difference between individual structures 
and the test particle. Since structures are transported like particles according to  (6), 
their velocity distribution can be taken to  be the same Gaussian as that of the test 
particle. Since many structures contribute to the local particle velocity, the 
respective velocity of an individual structure and a particle may be considered 
statistically independent to a good approximation. With these approximations 
applied to the two-dimensional geometry, PBcseli & Mikkelsen (1985) obtained 

RL(7) = b ( k )  W(k7(u2)1) dk, (12) Iom 
where W C )  = 1 -CexP (-in [exp (b2) dy. (13) 

The function W(C) is closely related to the Dawson integral. The differences in RL(7) 
for two and three dimensions originate in the calculations of ( u ~ ~ )  in (10) with a 
Gaussian distribution of the two, respectively three, velocity components. 

The Eulerian velocity correlation function RE(7) can be calculated similarly. 
Considering first the frozen flow, the velocity field is sampled along a trajectory r = 
u, t with constant probing velocity uo, i.e. v(t) = v(r = u, t )  for this case. An expression 
corresponding to (9) is of course valid also for RE(7), but (10) is now replaced by 

((dZ" l o 2 )  = ([(UO - V)" ul2) = ((luol" (e V)" Ul2)  

= wi"([(e - V)" vI2),  (14) 

or 

which is now an  exact relation. The random motion of eddies was accounted for by 
replacing wo in (15) by the velocity difference between the probe and the local flow 
velocity, i.e. writing 

where u on the right-hand side is assumed to  have components with a Gaussian 
distribution, by the same arguments as before. The explicit result is given by PBcseli 
& Mikkelsen (1986) as 

RE(7) = (am b ( k )  S ( k 7 ~ ' ,  $) dk, (17) 

where u ' ~  = $(v2) and 

S(G Y) = exp ( -kY2) COS (W exp ( -b2) Io(YY) Y dy7 (18) c 
where I ,  is the modified Bessel function of the first kind of order zero. In particular, 
for homogeneous incompressible flows, we have the mean square velocity fluctuations 
being independent of the actual sampling (Eulerian/Lagrangian), i.e. (u2 )  = (w2).  
The expression for the two-time, two-point correlation function RE((, 7) = (u(r ,  t )  - 
u ( T + r , t + 7 ) )  can be obtained from (17) simply by replacing wo by C/T.  It can be 
shown that RE(0,7) has a simple relation to RL(7) in (12). I n  this limit the two 
functions become identical, apart from a factor d 2  in the argument, see the 
Appendix and Wandel & Kofoed-Hansen (1962), or PBcseli & Mikkelsen (1986). 
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The normalized wavenumber spectrum b ( k )  entering (12) and (17)  is given by the 
Fourier transform of the spatial correlation function (o ( r ,  t )  - o ( r + [ ,  t))/(u2) = 

Rll([) + Rz2([), i.e. the sum of the longitudinal and lateral correlation functions. The 
spatial correlation tensor (v i ( r )  v j ( r  + 6 ) )  has the general form 

With the stream function introduced before, these correlation functions can be given 
a simpler form with 

f =  -(l/t;)d,R,(c)/R;? 9 = -dp,(C)/R; = d&Y)> (20) 
where R,([) is the scalar spatial correlation function for the stream function, where 
R,(t;+ 00)  + O  by choice of reference level and R; = -d,2Ra([ = 0). The notation 
dR,([)/d[ = d,R,([) is used. Note that homogeneous and isotropic two-dimensional 
turbulence does not possess any lateral integral scale, i.e. L, = Jg(t;)d[ = 0. The 
longitudinal lengthscale L, = Sf([) d5 is non-vanishing. The properties of the 
Correlation tensor (19) and the spectral tensor for a two-dimensional system is 
discussed for instance by PBcseli & Mikkelsen (1985). Fourier transformation of the 
Correlation function gives b ( k )  = (l/n) J: lf([) + g ( c ) ]  cos (kt;) d[, by use of (19), see 
also Batchelor (1953). 

The wavenumber spectrum can, however, be calculated from first principles when 
the form of the individual structures in ( 5 )  and (6) and their densities are known. It 
is most convenient to work with the stream function @ = c, $Jr-r l )  according to 
(5). The correlation function R, is by standard methods (Rice 1944) obtained as 

where i t  is assumed that the structures are uniformly distributed in space with 
statistically independent positions. The summation in (21) runs over all structure 
shapes with individual densities pl. A possible d.c.-contribution in (21) is assumed to 
vanish by symmetry arguments, i.e. positive and negative amplitudes of a structure 
are assumed to be equally probable. Note that R,(O) + 1. 

The present model allows the generation of a random flow which according to (21) 
can reproduce an arbitrary, prescribed, spatial correlation function, and therefore an 
arbitrary wavenumber spectrum. This is possible even with the use of only one type 
of randomly distributed structures. Given R, in (21) a spatial structure for $, can be 
prescribed in indefinitely many ways since the convolution implied in (21) is 
insensitive to a phase factor. When only one type of structure is present (with both 
signs being equally probable) the problem is fully specified if both the correlation 
function and the triple correlation function are specified. In  particular we have 
(uz )  = 2 ~ ’ ~  = 2R; from (20) and (21). Evidently, the model implicitly assumes a 
complete randomness of the flow. Consequently, it is not applicable to organizing 
flows, for instance. 

2.2, Simplified derivation 

It is evident that the analysis summarized in the present section cannot accommodate 
arbitrary spatial variations for the structures defined by $ J r )  in (21). Although the 
line-vortex model can be described by ( 5 )  and (6), the introduction of the 
corresponding logarithmic stream function in (21) will give rise to a divergence of the 
integral. It is worth pointing out that  the main results summarized in $2.1 can be 
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obtained by quite different arguments, which may be helpful in providing an insight 
into the physical implications of the approximations made by Wandel & Kofoed- 
Hansen (1962) in their analysis. For this purpose consider first a frozen flow, where 
the wavenumber spectrum is known by a Fourier transform of (21). Let this flow 
realization move with constant velocity u. A stationary observer will obtain a time- 
varying signal with an Eulerian correlation function given by 

RE(7 I u)  = JOm b ( k )  cos (ku7) dk. 

Now let u be randomly varying over the realizations of the ensemble. Assuming 
a Gaussian distribution for the components of u we have the probability density 
( U / U ’ ~ )  exp ( - + ( U / U ’ ) ~ )  for its magnitude, giving 

R d 7 )  = lom b ( k )  Jom y cos (ku’7y) exp ( -h2) dydk, 

reproducing (17) with vo = 0. Also the result for vo + 0 can be reproduced with a little 
more algebra, along the lines indicated here. It thus seems that the essentials of the 
analysis resulting in (17) amounts to  assuming that structures are swept rapidly past 
an observer in such a way that the flow velocity convecting individual structures in 
each realization can be considered constant in the time interval it takes a structure 
to propagate its own diameter. The Gaussian distribution for the velocity can be 
zrgued as already discussed. 

Also the expression (12) for the Lagrangian correlation function can be argued in 
a similar way. Consider a test particle being transported by the flow with a velocity 
v ,  which will be considered essentially constant in a finite time interval. The flow 
generating v a t  the particle position is composed of a large number of overlapping 
structures. Out of all these structures those having velocities in a narrow interval 
around u are selected. The number of overlapping structures is assumed to  be so large 
that the selected group will have a contribution to the spectrum b(k) which is 
independent of u. This requirement is trivially satisfied if all the eddies are identical. 
Their contribution to the time-varying correlation function experienced by the test 
particle will of course depend on the selected velocity u as 

RL(7 I U, U) = b ( k )  cos (k71U- ~ 1 )  dk. (24 ) JOm 
Again v and u will be varying over all realizations having the same Gaussian 
probability density with standard deviation u’. (An interesting special case can be 
argued, where the probability densities of v and u are different. See Wandel & 
Kofoed-Hansen 1962.) However, the probability density for Iu-nl is then also a 
Gaussian with standard deviation u’d2. Salu & Montgomery (1977) use a somewhat 
similar argument in their discussion of Corrsin’s hypothesis (Corrsin 1960). As one 
consequence we find that R ,  is trivially related to RE(0 ,7 )  as discussed in the 
Appendix. Another confirmation of this result can be obtained by (17) and noting 
that the foregoing arguments simply state that  vo should be considered as a random 
variable with probability density ( V , / U ’ ~ )  exp ( - $(v, /u ’ )~) .  Carrying out the averaging 
over vo using 3’: xexp ( -  xz),lo(/3x) dx = $ exp @I2) again the same result is obtained. 
It is worth noting that the present summary reproduces the main results of Wandel 
& Kofoed-Hansen (1962) irrespective of a use of the series expansion implicit in (9). 

A particular consequence of the simple relation between RL(7) and RE(7) in the 
present analysis is the corresponding relation between Lagrangian and Eulerian 
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integral timescales, i.e. 73 = ~ ~ 4 2 .  The literature seems somewhat ambiguous 
concerning the relation between these two quantities. On one hand Lumley & 
Panofsky (1964) argued that 7E < 7, since the Eulerian measurement correlates a t  
every instant new fluid a t  the observation point, whereas the Lagrangian correlation 
deals always with the same fluid. Velocities are supposed to be more persistent along 
the path of a fluid particle than a t  a fixed observation point. Alternatively, 
Kraichnan (1964) argued that the frozen random flow presents a limiting case where 
obviously 7E is infinite, while he expected 7, to be finite. Also Leslie (1973) argued 
for 7E > 7L, by noting that measurements in a fixed position are sensitive to the long 
period (i.e. large-scale) disturbances. The Lagrangian correlation is swept around by 
these disturbances and should, therefore, be much less affected by them. It is 
interesting that the present model analysis supports the arguments for rE > 7L. The 
ratio between Eulerian and Lagrangian micro timescales is 7,E/7mL = 4 2  in the 
present model, i.e. the same as the ratio of the integral timescales. Tennekes (1975) 
has argued for 7,E/7mL - l/Ref in three-dimensional flows, where Re is the Reynolds 
number, i.e. 7mE 6 7,L. The applicability of these results for moderate or small Re 
have been criticized, however, by Yeung & Pope (1989). 

2.3. Relation to Corrsin's hypothesis 
A potentially useful relation between Eulerian and Lagrangian correlation functions 
was argued by Corrsin (1960) on intuitive grounds. The justification of this 
hypothesis was discussed by, for instance, Weinstock (1976) while Peskin (1974) 
performed a numerical simulation for investigating its range of validity. We found 
it worthwhile to compare our results with those conjectured by Corrsin (1960), which, 
for the correlation tensors with elements denoted by the subscript ij, can be 
formulated as 

RL(7) i j  = ~ ~ ~ S P , n E ( r , 7 ) l j P ( r , 7 ) d l i  (25) 

where P(r ,  7 )  is the probability density for particle displacement for a particle which 
is known with certainty to be at r = 0 at  7 = 0, i.e. P(r,7 = 0) = S(r).  In particular, 
(25) gives in our notation for R L  in (9) and RE in (17) 

With a little algebra, which makes use of the results in the Appendix, it is readily 
demonstrated that our results (12) and (17) satisfy (26), provided we take P(r,7) = 
(1/2x) (u't)-' cxp ( -  S(r/u't)'). This form is, howcver, not consistent with that 
postulated for P in (25). This is readily seen by considering ( r ' )  obtained for a 
particle released at  the origin for t = 0, which is given by 

(r') = 2t(u2) (1-7/t)RL(7)d7, J: 
for homogeneous isotropic turbulence, see e.g. Lumley & Panofsky (1964). For small 
times (27) gives (r')  x (u') t2  which is consistent with (r ' )  = J -", r2P(r, t )  dr. For 
large times, however, in the diffusion limit, the result is ( r 2 )  x (u') t j:RL(7) d7 
which is not consistent with our expression for P(r,  t ) .  Although our analytical result 
for R, resembles the one obtained by Corrsin's hypothesis, the two expressions are 
not identical. The derivations are, after all, also fundamentally different. It 
is interesting, though, that (25) will imply in general (Weinstock 1976) that 
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R L ( r )  < RE(7) in agreement with our results. Corrsin’s analysis does not contain any 
analogue to  our relation (17).  

3. Numerical results 
A numerical code was developed in order to simulate a system containing a large 

number of structures which evolve according to  (3)-(4), written in normalized units. 
The code is in principle quite straightforward and need not be described in particular 
detail. The calculations are carried out in double precision and the displacement in 
the coordinates of the individual structures are followed. This is a rather time- 
consuming procedure which, for computational reasons, restricts the number of 
structures to at most a few thousand. Typically, in the simulations described in the 
following sections, we used 1800 interacting structures, with imposed symmetry 
conditions to be described. A significant increase in the number of structures would 
rcquire interpolation in a grid representation of the flow. Thc resulting numerical 
inaccuracy could give rise to a randomness in the structure trajectory which would 
be in disagreement with the one assumed in the model. Our calculations are carried 
out in a large square system with sidelength 3L, with the requirement that the 
number of structures in each of the 9 cells with area L2 is the same. A symmetry 
requirement is imposed by generating 8 positions from all positions of structures in 
the central cell, i.e. a position (xl,yl) gives rise also to (x,+L,y,), (xl ,yl+L) and 
(z, + L,  y1 +L) .  This procedure ensures that the number of structures in each of the 
9 cells is constant, i.e. if a structure leaves a cell another one enters simultaneously 
at the opposite position in the same cell. The procedure outlined here is effectively 
tantamount to  imposing periodic boundary conditions provided L is much larger 
than the spatial extent of any structure in the system. The timestepping is 
accomplished by a partially corrected third-order Adams-Bashforth scheme, see 
Gazdag (1976),  except for the first step, which is a simple Euler step, and the second 
one which is a leap-frog step. For Hamiltonian systems the conservation of H in (7 )  
is used as a test for the accuracy of the code, for a given timestep. Simple cases with 
only two structures in the central cell are used for additional tests. Here the solution 
is known exactly. For the simulations discussed in the following the initial positions 
of the structures were generated by standard random number generators on the 
computer. Test runs (not discussed here) were carried out for other initializations. 

Spatial correlations are obtained by recording time series for velocity components 
in selected points along the diagonal of a subcell with side length &. The correlation 
length of the fluctuating fields as obtained from (17) are smaller than & in all cases 
investigated. Likewise the correlation time is smaller than the time it  takes, on 
average, for a vortex to traverse the distance I&. The periodicity of our system can 
be ignored, and the subcell considered as representative for an element of an 
extended, homogeneous and isotropic flow. Lagrangian correlations are obtained 
both by following test particles in the flow, and for selfconsistently moving 
structures . 

The analysis summarized in $2 is in principle applicable for any shape of the 
structures (provided the integral exists) but the resulting expressions will in general 
have to be solved numerically. In  the present study we consider only the case where 
the individual structures are described by 

(28) $1 = A ,  exp ( - r*/S,), 

characterized by only two parameters A,  and 8,. With this simple form all our 
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T = O  T = 0.5 

FIQURE 1 (a ) .  For caption see facing page. 
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I I I I I I I 

X 

FTGIJRE 1 .  ( a )  Time sequence showing the evolution of the streamfunction for 200 structures of each 
polarity with (A,( = 1 and 8, = +. Note that individual structures cannot be discriminated by visual 
inspection. Black regions are negative while white regions are positive. The full system is periodic, 
as explained in the text. (6) Trajectory of one typical vortex, initially at (z, y) = ( 0 , O ) .  

expressions from $2 can be solved analytically. Two cases are considered : one where 
6, is the same for all structures and only A ,  is varying with 1. This system was shown 
to be Hamiltonian in $ 1.  As an illustration we give a time sequence for the evolution 
of the stream function in figure 1 together with the trajectory of a typical vortex. I n  
the other case studied, also 6, is allowed to vary. 

In  all cases considered we had S < L .  The periodicity imposed on the distribution 
of structures, which is a convenient computational simplification, is therefore 
immaterial for the interpretation of the numerical results. The computations were 
rather time consuming, and for practical reasons the density of structures could not 
be made arbitrarily large. Because many of the structures which compose the flow 
are overlapping, they are not individually discernible in a realization as in figure 1.  
We note, however, that incidental groups or clusters of structures (see e.g. the white 
or black regions in figure 1 )  will be deformed and distorted by the flow as discussed 
in $1. 

3.1. Structures with same widths and amplitudes 

First we consider the case where 6, = 6 and [All = A for all I with an equal numbcr 
of structures of the two polarities. The most important parameter for the problem is 
the density of structures ,u = NIL2 where N is the number of structures in a cell. A 
central assumption in the analysis summarized in $ 2  was that the velocity 
components have a Gaussian probability density, which follows from the assumption 
that many eddies contribute t o  the velocity a t  a selected point. The number of 
overlapping eddies is on average of the order 4Sp. It is well known, however, that  this 
quantity need not be particularly large, i.e. a number larger than 4-5 will suffice for 
producing a probability density which is in practice indiscernible from a Gaussian. 



496 J .  P. Lynov, A ,  H .  Nielsen, H .  L. Pekseli and J .  J .  Rasmussen 

(4 I6 11 

I I I I 

0 Kurtosis 

Q o O  3 
0 u o  

3 

0 

C .o 2 - - 2 -  

5 p = 4  

E m 1 -  

cz 

c 
.* 

-u 

- 1 -  
-u 
m 

o---u v v v 0 

Skewness 

I 1 I I 
0.5 1 .o 1.5 2.0 

1 2 1  0 

I 1 I 1 

0 Kurtosis 

0 
u o o o  0 0  

- 
p = l  

- 

v V v v V n ~ "  

Skewness 

1 I I I 

0 0.5 1 .o 1.5 2.0 

6 

We characterize the probability density for the velocity components by its lowest- 
order moments, i.e. standard deviation, skewness and kurtosis. In  figure 2 we show 
the variation of these three quantities for varying 6 and two values of p. The results 
are obtained as an average over an interval of24 time units (i.e. 2400 timesteps). For 
reference we give, by full lines, the variations according to our model. 

The value for (u') used in figure 2 was determined by first calculating the stream 
function correlation function obtained from (21) 

giving RI;, = ( t x )  (NA2/L2), i.e. ( u 2 )  = 7cpA2, while (0') = +7c,uA2S. 
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FIGURE 3. Distribution of the numbers of structure centres in a small area element A = 1 for ,u = 4 
obtained from the simulation with 6 = 4 and IAl = 1. Open circles show the results from a Poisson 
distribution with the corresponding parameters. 

Implicit in the derivation of Wandel & Kofoed-Hansen (1962) is the assumption 
that the distribution of eddies (or, more correctly, structure centres) in a volume 
element follows a Poisson distribution, i.e. in the present case the number, k, of 
structure centres in an area element A is distributed according to P ( k )  = ( A , u ) ~  
exp ( - A,u)/k ! If two area elements are non-overlapping then the two corresponding 
Poisson distributed random variables are independent. Since the equations of motion 
(3)-(4) certainly introduces a correlation between all the structures, the assumption 
of a Poisson distribution cannot be exact. In  the limit of small p,  all structures are 
essentially isolated and they are consequently not convected at all. For low structure 
densities, convection will be induced primarily when two structures of opposite 
polarity happen to overlap, and they will propagate along an orbit characterized by 
their bulk properties. The orbit is a straight line if the structures are identical apart 
from a sign of amplitude. Two structures of the same polarity will rotate around a 
suitably defined centre of mass. I n  either case structures will appear in pairs. 
However, again in the limit of large densities’ i t  might be expected that the 
correlation between individual structures is small. The assumption of a Poisson 
distribution mentioned before may then be appropriate. In figure 3 we show, with 
filled circles, the distribution of structure centres in a normalized area element 1 for 
,u = 4. Open circles show the results for a Poisson distribution for the given 
parameters. We find the agreement quite acceptable. 

Using (20) with (29) we readily obtain the expressions for the longitudinal and 
lateral correlation functions as 

and 

The numerical results are shown in figure 4 with the analytical results (30) and (31) 
given by a dotted line. The agreement seems fully satisfactory. I n  particular we 
confirmed that R12(5) = 0 within the statistical uncertainty, see (19). In  figure 4(c) 
the flatness factor is shown for both longitudinal and transverse velocity components. 
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FIQURE 4 (a ,  b ) .  For caption see facing page. 

These results indicate that the joint probability density of the fluctuating velocity is 
close to a bivariate Gaussian, where the flatness factor is 3 for all separations. This 
result is expected for a random superposition of many structures (Rice 1944). For the 
particularly simple model (28) used here, it is possible to solve (17)-(18) analytically 
with the result 
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6 
FIGURE 4. Results from the numerical simulation for (a )  the longitudinal and ( b )  the lateral 
correlation functions, respectively. The dotted line gives the analytical results from (30) and (31). 
The averages are obtained from a simulation with a normalized timespan of 120 with timestep 

The parameters are IAl = 1, S = 4 and ,u = 4. (c) Flatness factor P(C) = ( [ v t ( r l + [ , r z ) -  
vt(rl, rz)l4)/([v,(rl + C, r2) -vt(r,, rz ) ]z )z  for longitudinal (full line) and transverse (dashed line) 
velocity components. 

where we used b ( k )  = (b'/2n)a(1+k26)exp(-96k2) in (17). Figure 5 shows (32) for 
varying r and 5. In  the limit [ = 0 the relation 

is obtained, while 7 = 0 gives RE([, 0) = (1 -$e/S) exp ( -t(e/b')) which reproduces 
RE([, 0) = a[ f ( 6 )  +g([)] as it should. The limit 7+0  is thus already analysed by figure 
4, where, as already mentioned, the expression (32) is in excellent agreement with our 
numerical results. For T =b 0 we found that the largest disagreement is obtained for 
RE(0,7) ,  i.e. the limit given by (33). These results are shown in figure 6 with (33) 
represented by a dotted curve. Close to the origin the agreement between the two 
curves is actually quite good, but the disagreement for large 7 is obviously an 
indicator of a shortcoming in the model. An increase of 6 results in successively 
improving agreement between the numerical and analytical results. Finally the 
Lagrangian correlation function is determined as (see the Appendix) 

Figure 7 shows numerical results where (34) is included by a dotted curve for 
comparison. I n  this case the agreement is quite good. At first sight it seems 
paradoxical that  (34) gives such a good representation for the numerically simulated 
dynamics, while the seemingly similar expression (33) is giving only a modest 
approximation to the Eulerian correlations. It should however be noted, having in 
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RE(<, 7 )  
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J ru' x 
FIGURE 5. The analytical expression for the Eulerian correlation function R,(C,7), shown aa a 

function of 5 for different 7 .  Parameters are as in figure 4. 
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FIGURE 6. Numerical results for R,(O, 7 )  with the analytical expression represented by a dotted line. 
The dashed line shows numerical results where the individual structures are moving along straight 
line orbits with constant velocities which are chosen randomly from a Gaussian distribution. 
Parameters are aa in figure 4. 
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FIQURE 7. Numerical results for the Lagrangian velocity correlation function RL(7) with the 
analytical expression represented by a dotted line. Parameters are as in figure 4. 

mind the simple physical discussion in 52.2, that the analytical results implicitly 
assume that eddies are swept rapidly past the observation point. This assumption is 
evidently best satisfied when the observation point is itself moving as, for example, 
in Lagrangian sampling. With the substitution ro = vot  in (32) corresponding to 
Eulerian sampling in a moving frame, as in (17),  we again obtained a good agreement 
between numerical and analytical correlation functions, as already mentioned. Our 
numerical results for the Eulerian correlation function provide evidence in favour of 
Leslie’s (1973) physical argument quoted previously, i.e. the Eulerian correlation 
function seems particularly sensitive to large-scale fluctuations. 

Ignoring (6) and prescribing straight-line trajectories for the structures with a 
Gaussian distribution of velocities we obtain a very good agreement with (33). These 
results are shown by a dashed line in figure 6. The deviations from (33) observed in 
figure 6 thus originate from time variations in the velocities during a structure transit 
time which will be particularly conspicuous for variations in slow structure velocities. 

Calculations as those summarized in this section have been repeated with 
parameters JAl = 1 , 6  = t and ,u = 8. The result agree with those from the simulations 
with ,u = 4, within the statistical uncertainty. 

Intuitively it could be expected that an increase in (u2) would give rise to better 
agreement between numerical and analytical results for the Eulerian correlation 
functions. However, attempts to increase (u2 )  inevitably brings the system into the 
negative temperature regime characterized by a long-range ordering, and the basic 
assumptions in the analysis of 92 are invalidated. In our simulations the transition 
becomes apparent by an increase in correlation lengths as compared to those 
obtained, for example, from figure 4. The transition comes rather gradually and the 
value for the energy where the temperature changes sign is poorly defined by these 
numerical results. 
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3.2. Structures with statistically distributed amplitudes 
A simple generalization of the results of $3.1 is obtained by retaining thc form (28) 
with 6, = constant, but let A ,  be a quantity which varies randomly with 1. When all 
A ,  have the same distribution the results of $3.1 are readily generalized by the 
extension of Campbell’s theorem given by Rice (1944) and for instance (29) is 
trivially generalized by use of (21). The important point here is that the Hamiltonian 
(7)  applies for the present problem also. The numerical simulations were extended to 
cover also the case where A ,  varied. In order to ensure that q4 dr = 0 we included 
structures pairwise with both polarities of A ,  for varying 1. We considered a case with 
an equal number of amplitudes 1.2 and 0.8 and 6 = 0.5. Another simulation used a 
random number generator with amplitudes distributed in the range 10.8; 1.21 so that 
the average remained 1.0 also with 6 = 0.5. Finally we considered the case with 
amplitudes A,  = 0.5, 1.0, 1.5 and 2.0 all with same density pi = 1 while 6 = 1.  
Comparing the numerically obtained correlation functions with the analytical results 
we found the same overall agreement as the one found in 53.1, maybe with a slight 
improvement, which however was within the statistical uncertainty. In  particular we 
did not find any noticeable improvement in the agreement with the analytical 
expression for the Eulerian correlation function. 

3.3. Structures with distributed amplitudes and widths 
Our numerical simulations were generalized also to the case where the amplitudes as 
well the widths of the structures given by (28)  were distributed. This case is 
principally different from those discussed in $53.1 and 3.2 since (7)  is no longer 
conserved. The analytical expressions (12) and (17) for the correlation functions are 
derived independently of a Hamiltonian formalism and can easily be generalized. For 
example the Lagrangian correlation function becomes 

with 

where (28) was explicitly used in (12). The number of possible different structures, 
characterized by A ,  and S,, which can appear in each realization is denoted by M in 
(35), and their density is p,. The number M is thus not a quantity referring to an 
actual realization. 

The numerical simulations were carried out for a number of different cases: (i) 
amplitudes A = 1 and widths 6 = 0.3 and 6 = 0.9, (i i)  A = 1 with S = 0.3 and 6 = 0.8 
and (iii) the combination A = 0.8, 6 = 0.3 and A = 1.2, 6 = 0.8 in equal numbers, 
each with densities p = 2. The overall agreements between the theoretical and the 
numerically obtained correlation functions was quite similar to those summarized in 
the foregoing sections. To be more specific we introduced a measure e for the 
difference between the numerical and theoretical results as 
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shown here in terms of the Lagrangian correlation function, where RL,N is its 
numerical obtained value while RL,T is the theoretical expression. Limiting the 
integrations in (37) to the interval [O; 1.51 we obtain e = 0.24f0.06 for the 
Lagrangian correlation function, noting that the integral timescale defined by 
RLv N(7) was consistently larger than the one obtained by RL,T(7). 

4. Conclusions and discussions 
The relation between Eulerian and Lagrangian correlation functions has been 

studied in to a two-dimensional autonomous flow model, which can be considered as 
a generalization of Onsager’s line-vortex model. The results from a numerical 
simulation, where the properties of the model were implemented, were compared 
with analytical expressions for the correlation functions obtained by applying the 
ideas of Wandel & Kofoed-Hansen (1962) in a two-dimensional representation. In  
agreement with the simulation model this analysis assumes that a randomly varying 
flow is represented by a superposition of coherent structures in the form of vortices 
where each one propagates without change in shape along a trajectory which is 
determined by the combined convective effect of all other structures. In  the present 
analysis we used a particularly simple shape for the individual structures (28) 
characterized by only two parameters, i.e. an amplitude and a width. By use of this 
simple form all analytical results can be expressed in a closed form where the 
distribution of the parameters enter. The Eulerian correlation function RE([, 7 )  as 
well as its Lagrangian counterpart RL(7) are expressed in terms of the same 
wavenumber spectrum integrated together with weight functions containing the 
amplitudes, widths and densities of the structures as parameters. The conclusions 
from a comparison between the numerical and analytical results can be summarized 
as follows : for the limiting case RE([, 7 = 0) we found a very good agreement in all 
cases investigated. As 7 is increased the agreement becomes progressively worse 
where the limit RE([ = 0 , ~ )  gives the most pronounced disagreement between theory 
and simulations, where in particular the Eulerian correlation time from the 
simulations exceeded the theoretical value (see figure 6) .  We observed, however, 
that, in the limit where the product Sp exceeded a value around 1 in the simulations 
the micro-timescale defined by [d,2R,(O,T)];k0 is in quite good agreement with its 
analytical expression. In  the same limit a good agreement was found for the 
Lagrangian correlation function RL(7) for all values of 7 ,  see e.g. figure 7. The latter 
results were independent of the conservation of the Hamiltonian (7)  by the model. 
The limit Sp 2 1 implies that  in any given point more than four structures 
contribute, on average, to  the local bulk velocity obtained by the superposition (3) 
or ( 5 ) .  For computational reasons we considered only cases where p < 8. For a typical 
value of a=; we found, however, that p >  2 was sufficient to ensure that the 
probability densities of the velocity components were close to Gaussians. 

The diffusion of passive particles can readily be investigated in the simulations of 
the model. The mean square displacement of a particle with respect to its origin of 
release is given by e.g. Lumley & Panofsky (1964) by the expression (27). We have 
not carried out any particular study of the mean square displacement since the 
results can easily be derived from RL(7) which we have analysed in detail. 

The basic result of our study was a demonstration that within the present model 
the Lagrangian correlation function, to quite good approximation, could be obtained 
from an expression (12) which involved as input parameters only the wavenumber 
power-spectrum 8 ( k )  and the mean-square fluctuation level (u2 ) .  The weight 
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function W(5) in (12) is an a priori given quantity. With both b ( k )  and ( 2 )  being 
measurable quantities, the relation (12) and its three-dimensional analogue, can be 
postulated as universal approximations valid irrespective of the model from which 
they were derived. Actually Wandel & Kofoed-Hansen (1962) and Kofoed-Hansen & 
Wandel (1967) presented arguments for a rather general validity of the ap- 
proximation and a t  least applied to the Hay-Pasquill (1960) hypothesis the results 
proved quite convincing. A study of the general applicability of (12) is in progress, 
using a two-dimensional flow simulation based on the Euler equations. 

Finally, we should like to point out that simulations like the ones used in the 
present work can be useful for testing methods for recovery of large coherent 
structures in turbulent flows (see e.g. Hussain 1986). The flow in our simulation is 
composed entirely of coherent structures, and we find it worth noting that the 
lowest-order approximation advocated by Adrian (1979) and Adrian & Moin (1988) 
will produce signatures for double-vortex structures. As pointed out by PBcseli & 
Mikkelsen (1986) this result could be fundamentally misleading, since the flow is, by 
construction in our case, composed of monopole-type structures. 

We thank 0. Kofoed-Hansen and C. F. Wandel for valuable discussions in the 
initial stages of this study. 

Appendix 
I n  this Appendix we will prove the identity 

RL(7/d2) = R,(O, 4, (A 1) 

where RL is given by (12) while R,(O, 7) is obtained from (17) with vo = 0. Following 
PBcseli & Mikkelsen (1985, 1986) we use the series expansions 

cosx= c ( - 1 ) n T  X2n 
and 

giving, 

n-0 (2n). 

Joaycos(xy)exp(--hP)dy = 1+ 2 (-l)n- xZn2%! 
12-1 (2n) ! 

X2n+22n+l (n+ l)! 
= 1+ ( - l ) n + l  

= 1 + 2 ( -  lY+l 

n-0 (2n+2)! 

x2%+22nn! 
(A 3) 

n-0 

by using the substitution n + n + 1. The relation (A 1) then follows by introducing the 
arguments of the functions in (12) and (17) since u ' ~  = t(u2). The identity (A 2) = 

(A3) demonstrates that W(x) is simply the cosine transform of the Rayleigh 
distribution. 

The result (A 1) implies R, < R E  for all times. It is interesting that the results of 
Weinstock (1976) and also Reeks (1977) support this inequality, a t  least for large 7, 
see also the three-dimensional flow simulations of Yeung & Pope (1989). 
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